% --------------------------- \section{Operational-Premise Taxonomy (OPT)} % --------------------------- Because OPT introduces several new labels, we present those here before tackling background and related work topics. OPT classes are defined by dominant mechanism; hybrids are explicit compositions: \begin{itemize}[leftmargin=1.6em] \item \textbf{Learnon (\Lrn)} — Parametric learning within an individual (gradient/likelihood/return updates). \item \textbf{Evolon (\Evo)} — Population adaptation via variation, selection, inheritance. \item \textbf{Symbion (\Sym)} — Symbolic/logic inference over discrete structures (KB, clauses, proofs). \item \textbf{Probion (\Prb)} — Probabilistic modeling and approximate inference (posteriors, ELBO). \item \textbf{Scholon (\Sch)} — Deliberative search and planning (heuristics, DP, graph search). \item \textbf{Controlon (\Ctl)} — Feedback control and state estimation in dynamical systems. \item \textbf{Swarmon (\Swm)} — Collective/swarm coordination with local rules and emergence. \end{itemize} \noindent \emph{Hybrid notation.}~We use \hyb{A+B}~for co-operative mechanisms, \hyb{A/B}~for hierarchical nesting (outer/inner), \hyb{A\{B,C\}}~for parallel ensembles, and \hyb{[A→B]}~for pipelines (Appendix~\ref{app:optcode}).