Operational-Premise-Taxonomy/paper/pieces/related-work.tex

23 lines
3.4 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

% ---------------------------
\section{Related Work: Existing Taxonomies and Frameworks}
% ---------------------------
Standards bodies and policy groups have invested heavily in AI definitions, lifecycle models, and governance instruments. However, none provides a compact, mechanism-centric taxonomy spanning \Lrn, \Evo, \Sym, \Prb, \Sch, \Ctl, and \Swm, nor an explicit grammar for hybrids.
\paragraph{Standards and terminology.}
ISO/IEC 22989 standardizes terms and core concepts for AI across stakeholders, serving as a definitional foundation rather than a technique taxonomy. ISO/IEC 23053 offers a functional block view for \emph{machine-learning-based}~ AI systems (data, training, inference, monitoring), which is valuable architecturally but limited to ML and therefore excludes non-ML pillars such as symbolic reasoning, control/estimation, and swarm/evolutionary computation \citep{ISO22989,ISO23053}.
\paragraph{Risk and management frameworks.}
NISTs AI Risk Management Framework (AI RMF 1.0) provides an implementation-agnostic process for managing AI risks (govern, map, measure, manage). Its companion \emph{AI Use Taxonomy}~ classifies humanAI task interactions and use patterns. Both are intentionally technique-agnostic: they can apply to any implementation class, but do not sort systems by operative mechanism \citep{NISTRMF,NISTAI2001}.
\paragraph{Policy classification tools.}
The OECD Framework for the Classification of AI Systems organizes systems along multi-dimensional policy axes (People \& Planet, Economic Context, Data \& Input, AI Model, Task \& Output). This is a powerful policy characterization instrument, yet it remains descriptive and multi-axis rather than a compact mechanism taxonomy with hybrid syntax \citep{OECDClass}.
\paragraph{Regulatory regimes.}
The EU Artificial Intelligence Act introduces risk-based classes (e.g., prohibited, high-risk, limited, minimal) and obligations, largely orthogonal to implementation specifics. Technique details matter for \emph{compliance evidence}, but the Act does not define a canonical implementation taxonomy \citep{EUAIAct}.
\paragraph{Academic precedents and surveys.}
The textbook tradition organizes AI by substantive pillars—search/planning, knowledge/logic, probabilistic reasoning, learning, and agents—closely aligning with the mechanism families in this paper but without proposing a stable naming code or formal hybrid grammar \citep{AIMA4}. Reinforcement learning texts formalize optimization and value iteration for \Lrn/\Sch~ couplings \citep{SuttonBarto2018}. Classical theory anchors \Prb~ (\citealp{KnillPouget2004}), \Ctl~ (\citealp{Kalman1960,Pontryagin1962,TodorovJordan2002}), and foundational dynamics for \Evo~ (\citealp{Price1970,TaylorJonker1978}). Learning rules for \Lrn~ include Hebbian and Ojas formulations \citep{Hebb1949,Oja1982}, while resolution proofs formalize \Sym~ \citep{Robinson1965Resolution}. No-Free-Lunch results motivate preserving multiple mechanisms rather than collapsing them into a single “optimization” bucket \citep{Wolpert1997}.
\paragraph{Gap and contribution.}
Taken together, these works motivate \emph{two layers}: (i) policy/lifecycle/risk instruments that are technique-agnostic and (ii) a compact, biologically grounded \emph{implementation taxonomy}~ with explicit hybrid composition. OPT fills the second layer with seven frozen roots and a grammar for hybrids, designed to interface cleanly with the first layer.