alice/code/curio_experiment.py

193 lines
6.0 KiB
Python
Executable File

"""
experiment.py
Curiosity project Experiment class definition.
Aim for better encapsulation.
Experiment class
- This class should get the various classes to use in running an experiment
- EvolveWeights
- mda?
- Environ (GridWorld, ConvBelt, Puzzle)
- Still is going to require ad hoc function to create the particular Environ
- But could pass in function to use
- Agentclass
- And experimental attributes
- For example
- Experiment constructs EW instance, passes in weight length
- Experiment constructs Environ instance
- Experiment requests evolution run of EW with parameters
- EW calls Experiment for each evaluation of an individual (and in what generation)
- Experiment calls Environ.evaluate with individual weights, agentclass
- Passes w, tuple back to EW
"""
import sys
import os
import traceback
class Holder(object):
def __init__(self):
pass
class Experiment(object):
"""
Experiment class. Instances will drive reinforcement learning experiments.
"""
def __init__(self):
self.agentclass = None
self.environclass = None
self.evolverclass = None
self.environmaker = None
pass
def validate(self):
valid = True
# Test that we have classes to use
valid = valid and (not self.agentclass in [None])
valid = valid and (not self.environclass in [None])
valid = valid and (not self.evolverclass in [None])
# Test other values here
return valid
def set_schedule(self, schedule):
self.schedule = schedule
def set_environ_maker(self, environmaker):
self.environmaker = environmaker
def make_environ(self):
if not self.environmaker in [None]:
try:
self.environ = self.environmaker()
except:
estr = f"Error: traceback.format_exc()"
print(estr)
self.environ = None
assert 0, "Creating environment failed. Quitting."
def set_agentclass(self, agentclass):
# Test class for compatibility
okclass = True
# No test yet
if okclass:
self.agentclass = agentclass
def get_agentclass(self):
return self.agentclass
def set_environclass(self, environclass):
# Test class for compatibility
okclass = True
if not 'evaluate' in dir(environclass):
okclass = False
print("set_environclass error: class does not provide 'evaluate'")
if okclass:
self.environclass = environclass
def get_environclass(self):
return self.environclass
def set_evolverclass(self, evolverclass):
# Test class for compatibility
okclass = True
if not 'driver' in dir(evolverclass):
okclass = False
print("set_evolverclass error: class does not provide 'driver'")
if okclass:
self.evolverclass = evolverclass
def set_agent_attributes(self, alpha=0.005):
self.agent_props = Holder()
self.agent_props.alpha = 0.005
def set_evolver_attributes(self,
popsize=100,
maxgenerations=10000,
cxpb=0.5,
mtpb=0.05,
wmin=-20.0,
wmax=20.0,
mut_center=0.0,
mut_sigma=0.1,
mut_indpb=0.05,
tournsize=5,
tournk=2,
normalize_fitness=True,
tag='environ'
):
self.evolver_props = Holder()
self.evolver_props.popsize = popsize
self.evolver_props.maxgenerations = maxgenerations
self.evolver_props.cxpb = cxpb
self.evolver_props.mtpb = mtpb
self.evolver_props.wmin = wmin
self.evolver_props.wmax = wmax
self.evolver_props.mut_center = mut_center
self.evolver_props.mut_sigma = mut_sigma
self.evolver_props.mut_indpb = mut_indpb
self.evolver_props.tournsize = tournsize
self.evolver_props.tournk = tournk
self.evolver_props.normalize_fitness = normalize_fitness
self.evolver_props.tag = tag
def make_evolver_instance(self):
self.evolver = self.evolverclass(
# self.environclass,
# weights_len
weights_len=self.environ.get_weights_len(),
# alpha
alpha=self.environ.alpha,
# evaluate function
evaluate=self.environ.evaluate,
popsize=self.evolver_props.popsize,
maxgenerations=self.evolver_props.maxgenerations,
cxpb=self.evolver_props.cxpb,
mtpb=self.evolver_props.mtpb,
wmin=self.evolver_props.wmin,
wmax=self.evolver_props.wmax,
mut_center= self.evolver_props.mut_center,
mut_sigma= self.evolver_props.mut_sigma,
mut_indpb= self.evolver_props.mut_indpb,
tournsize= self.evolver_props.tournsize,
tournk= self.evolver_props.tournk,
normalize_fitness= self.evolver_props.normalize_fitness,
tag= self.evolver_props.tag
)
def set_env_attributes(self):
self.env_props = Holder()
def handle_evaluation(self, ind, generation):
"""
evolver calls this to get an evaluation of an
individual.
Depending on the experiment schedule and generation,
this may require constructing a new environment.
"""
pass
def run_experiment(self):
"""
# Run experiment
ew = EvolveWeights(world,
popsize=100,
maxgenerations=1000,
tournsize=75,
tournk=3,
normalize_fitness=False)
ew.driver()
"""