186 lines
5.7 KiB
Python
Executable File
186 lines
5.7 KiB
Python
Executable File
"""
|
|
experiment.py
|
|
|
|
Curiosity project Experiment class definition.
|
|
|
|
Aim for better encapsulation.
|
|
|
|
Experiment class
|
|
- This class should get the various classes to use in running an experiment
|
|
- EvolveWeights
|
|
- mda?
|
|
- Environ (GridWorld, ConvBelt, Puzzle)
|
|
- Still is going to require ad hoc function to create the particular Environ
|
|
- But could pass in function to use
|
|
- Agentclass
|
|
- And experimental attributes
|
|
- For example
|
|
- Experiment constructs EW instance, passes in weight length
|
|
- Experiment constructs Environ instance
|
|
- Experiment requests evolution run of EW with parameters
|
|
- EW calls Experiment for each evaluation of an individual (and in what generation)
|
|
- Experiment calls Environ.evaluate with individual weights, agentclass
|
|
- Passes w, tuple back to EW
|
|
|
|
"""
|
|
|
|
import sys
|
|
import os
|
|
import traceback
|
|
|
|
class Holder(object):
|
|
def __init__(self):
|
|
pass
|
|
|
|
class Experiment(object):
|
|
"""
|
|
Experiment class. Instances will drive reinforcement learning experiments.
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.agentclass = None
|
|
self.environclass = None
|
|
self.evolverclass = None
|
|
self.environmaker = None
|
|
pass
|
|
|
|
def validate(self):
|
|
valid = True
|
|
# Test that we have classes to use
|
|
valid = valid and (not self.agentclass in [None])
|
|
valid = valid and (not self.environclass in [None])
|
|
valid = valid and (not self.evolverclass in [None])
|
|
# Test other values here
|
|
return valid
|
|
|
|
def set_schedule(self, schedule):
|
|
self.schedule = schedule
|
|
|
|
def set_environ_maker(self, environmaker):
|
|
self.environmaker = environmaker
|
|
|
|
def make_environ(self):
|
|
if not self.environmaker in [None]:
|
|
try:
|
|
self.environ = self.environmaker()
|
|
except:
|
|
estr = f"Error: traceback.format_exc()"
|
|
print(estr)
|
|
self.environ = None
|
|
|
|
def set_agentclass(self, agentclass):
|
|
# Test class for compatibility
|
|
okclass = True
|
|
# No test yet
|
|
|
|
if okclass:
|
|
self.agentclass = agentclass
|
|
|
|
def get_agentclass(self):
|
|
return self.agentclass
|
|
|
|
def set_environclass(self, environclass):
|
|
# Test class for compatibility
|
|
okclass = True
|
|
|
|
if not 'evaluate' in dir(environclass):
|
|
okclass = False
|
|
print("set_environclass error: class does not provide 'evaluate'")
|
|
|
|
if okclass:
|
|
self.environclass = environclass
|
|
|
|
def get_environclass(self):
|
|
return self.environclass
|
|
|
|
def set_evolverclass(self, evolverclass):
|
|
# Test class for compatibility
|
|
okclass = True
|
|
|
|
if not 'driver' in dir(evolverclass):
|
|
okclass = False
|
|
print("set_evolverclass error: class does not provide 'driver'")
|
|
|
|
if okclass:
|
|
self.evolverclass = evolverclass
|
|
|
|
def set_agent_attributes(self, alpha=0.005):
|
|
self.agent_props = Holder()
|
|
self.agent_props.alpha = 0.005
|
|
|
|
def set_evolver_attributes(self,
|
|
popsize=100,
|
|
maxgenerations=10000,
|
|
cxpb=0.5,
|
|
mtpb=0.05,
|
|
wmin=-20.0,
|
|
wmax=20.0,
|
|
mut_center=0.0,
|
|
mut_sigma=0.1,
|
|
mut_indpb=0.05,
|
|
tournsize=5,
|
|
tournk=2,
|
|
normalize_fitness=True,
|
|
tag='environ'
|
|
):
|
|
self.evolver_props = Holder()
|
|
self.evolver_props.popsize = popsize
|
|
self.evolver_props.maxgenerations = maxgenerations
|
|
self.evolver_props.cxpb = cxpb
|
|
self.evolver_props.mtpb = mtpb
|
|
self.evolver_props.wmin = wmin
|
|
self.evolver_props.wmax = wmax
|
|
self.evolver_props.mut_center = mut_center
|
|
self.evolver_props.mut_sigma = mut_sigma
|
|
self.evolver_props.mut_indpb = mut_indpb
|
|
self.evolver_props.tournsize = tournsize
|
|
self.evolver_props.tournk = tournk
|
|
self.evolver_props.normalize_fitness = normalize_fitness
|
|
self.evolver_props.tag = tag
|
|
|
|
def make_evolver_instance(self):
|
|
self.evolver = self.evolverclass(
|
|
self.environclass,
|
|
popsize=self.evolver_props.popsize,
|
|
maxgenerations=self.evolver_props.maxgenerations,
|
|
cxpb=self.evolver_props.cxpb,
|
|
mtpb=self.evolver_props.mtpb,
|
|
wmin=self.evolver_props.wmin,
|
|
wmax=self.evolver_props.wmax,
|
|
mut_center= self.evolver_props.mut_center,
|
|
mut_sigma= self.evolver_props.mut_sigma,
|
|
mut_indpb= self.evolver_props.mut_indpb,
|
|
tournsize= self.evolver_props.tournsize,
|
|
tournk= self.evolver_props.tournk,
|
|
normalize_fitness= self.evolver_props.normalize_fitness,
|
|
tag= self.evolver_props.tag
|
|
)
|
|
|
|
def set_env_attributes(self):
|
|
self.env_props = Holder()
|
|
|
|
def handle_evaluation(self, ind, generation):
|
|
"""
|
|
evolver calls this to get an evaluation of an
|
|
individual.
|
|
|
|
Depending on the experiment schedule and generation,
|
|
this may require constructing a new environment.
|
|
"""
|
|
pass
|
|
|
|
def run_experiment(self):
|
|
"""
|
|
# Run experiment
|
|
ew = EvolveWeights(world,
|
|
popsize=100,
|
|
maxgenerations=1000,
|
|
tournsize=75,
|
|
tournk=3,
|
|
normalize_fitness=False)
|
|
ew.driver()
|
|
"""
|
|
|